

MARBLE

Machine Assisted Boundary Layer Emulation is a neural network based
parameterization for weather and climate models, using the Sympl [https://github.com/mcgibbon/sympl] framework.
It requires Python 3.

Contents:

	Installation
	Stable release

	From sources

	Quickstart

	Usage
	Aliases

	Initialization

	Decomposition

	Forcing

	MARBLE

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Deploying

	Credits
	Development Lead

	Contributors

	Credits

	History
	0.1.0 (2019-05-30)

Indices and tables

	Index

	Module Index

	Search Page

Installation

Stable release

To install MARBLE, run this command in your terminal:

$ pip install marble

This is the preferred method to install MARBLE, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for MARBLE can be downloaded from the Github repo [https://github.com/mcgibbon/marble].

You can either clone the public repository:

$ git clone git://github.com/mcgibbon/marble

Or download the tarball [https://github.com/mcgibbon/marble/tarball/master]:

$ curl -OL https://github.com/mcgibbon/marble/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Quickstart

For installation instructions see Installation.

Once installed, check out some of the scripts in the examples folder [https://github.com/mcgibbon/marble/tree/master/examples]. These
should run from any directory you put them in.

A good starting place is the single column model in scm.py [https://github.com/mcgibbon/marble/blob/master/examples/scm.py].

If you haven’t used Sympl before, you may want to read the Sympl documentation [https://sympl.readthedocs.io/en/latest/],
or at least the Sympl quickstart [https://sympl.readthedocs.io/en/latest/quickstart.html].

Usage

To use MARBLE in a project:

import marble

MARBLE uses the Sympl framework. You can read more in the Sympl documentation [https://sympl.readthedocs.io/en/latest/].
MARBLE comes with code examples, which can be accessed from your local installation or the MARBLE github repo [https://github.com/mcgibbon/marble/tree/master/examples].

Aliases

As of writing this documentation, one shortcoming of Sympl is the need to explicitly
write the long name of any quantities that are accessed from a state dictionary
in the run script or analysis code. This package adds some helper tools that
avoid this requirement, by allowing you to refer to long names using aliases
that you register at the top of your run script. This retains the benefit of
having quantities explicitly defined, because anyone reading your code can look
at the top where you register aliases to figure out what your short aliases mean.

For example:

import marble
import sympl

marble.register_alias('rt', 'total_water_mixing_ratio')
or
marble.register_alias_dict({'rt': 'total_water_mixing_ratio'})

state = {
 'total_water_mixing_ratio': sympl.DataArray(0., dims=[], attrs={'units': 'kg/kg'})
}

state = marble.AliasDict(state)
print(state['rt']) # gets state['total_water_mixing_ratio']

	
marble.register_alias(alias, long_name)

	

	
marble.register_alias_dict(alias_dict)

	

	
class marble.AliasDict(*args, **kwargs)

	

Initialization

State initialization is not performed by the MARBLE module, but we do give an
example initialization code [https://github.com/mcgibbon/marble/blob/master/examples/initialization.py]. To call the modules, you need to create a state
that has all the required quantities with defined dimensions and units.

One thing to keep in mind, which we will discuss more below, is that MARBLE runs
using principal components of its vertically-resolved quantities. Those
principal components are pre-defined, and assume that their height-resolved
inputs are on a 3km, 20-point equidistant grid with points at 0km and 3km.

Decomposition

As we just said, MARBLE runs using principal components of its
vertically-resolved quantities. Those
principal components are pre-defined, and assume that their height-resolved
inputs are on a 3km, 20-point equidistant grid with points at 0km and 3km.

When MARBLE is run, it operates on principal components of vertically-resolved
quantities. This means that before integration, the state needs to
be converted into principal components, and after integration they need to be
converted back to height coordinates before plotting or analysis.

To convert between height and principal components, we provide two helper
functions that operate on one quantity at a time, and three Sympl components
which operate on commonly-grouped quantities.

	
marble.convert_height_to_principal_components(array, basis_name, subtract_mean=True)

	Converts a numpy array from height coordinates on a 20-point equidistant grid
from 0 to 3km (inclusive) into principal components required by MARBLE.

	Parameters

	
	array – numpy array whose final dimension is of size 20

	basis_name – short alias name of the quantity whose principal components
to use. For example, ‘rt’, ‘sl’, ‘cld’, ‘rcld’, ‘rrain’, or ‘w’.

	subtract_mean – whether to subtract the mean vertical profile of the
basis quantity from the numpy array before converting into principal
components. Generally this is True if you are converting the basis
quantity itself, and False if you are converting a difference to
apply to the basis quantity (such as a tendency).

	Returns

	
	numpy array whose final dimension length is equal to the

	number of principal components used for hte basis quantity.

	Return type

	return_array

	
marble.convert_principal_components_to_height(array, basis_name, add_mean=True)

	Converts a numpy array from principal components as used by MARBLE to
height coordinates on a 20-point equidistant grid from 0 to 3km (inclusive).

	Parameters

	
	array – numpy array whose final dimension is principal component number

	basis_name – short alias name of the quantity whose principal components
are used. For example, ‘rt’, ‘sl’, ‘cld’, ‘rcld’, ‘rrain’, or ‘w’.

	add_mean – whether to add in the mean vertical profile of the
basis quantity from the numpy array after converting to height
coordinates. Generally this is True if you are converting the basis
quantity itself, and False if you are converting a difference
applied to the basis quantity (such as a tendency).

	Returns

	numpy array whose final dimension length is 20.

	Return type

	return_array

	
class marble.InputHeightToPrincipalComponents

	
Converts MARBLE’s vertically-resolved inputs from height coordinates to
principal components.

Input Properties:

	liquid_water_static_energy:

	alias: sl,
dims: [‘*’, ‘z_star’],
units: J/kg,

	total_water_mixing_ratio:

	alias: rt,
dims: [‘*’, ‘z_star’],
units: kg/kg,

	vertical_wind:

	alias: w,
dims: [‘*’, ‘z_star’],
units: m/s,

Diagnostic Properties:

	liquid_water_static_energy_components:

	alias: sl_latent,
dims: [‘*’, ‘sl_latent’],
units: ,

	total_water_mixing_ratio_components:

	alias: rt_latent,
dims: [‘*’, ‘rt_latent’],
units: ,

	vertical_wind_components:

	alias: w_latent,
dims: [‘*’, ‘w_latent’],
units: ,

	
class marble.InputPrincipalComponentsToHeight

	
Converts MARBLE’s vertically-resolved inputs from principal components to
height coordinates.

Input Properties:

	liquid_water_static_energy_components:

	alias: sl,
dims: [‘*’, ‘sl_latent’],
units: ,

	total_water_mixing_ratio_components:

	alias: rt,
dims: [‘*’, ‘rt_latent’],
units: ,

	vertical_wind_components:

	alias: w,
dims: [‘*’, ‘w_latent’],
units: ,

Diagnostic Properties:

	liquid_water_static_energy:

	alias: sl,
dims: [‘*’, ‘z_star’],
units: J/kg,

	total_water_mixing_ratio:

	alias: rt,
dims: [‘*’, ‘z_star’],
units: kg/kg,

	vertical_wind:

	alias: w,
dims: [‘*’, ‘z_star’],
units: m/s,

	
class marble.DiagnosticPrincipalComponentsToHeight

	
Converts MARBLE’s vertically-resolved diagnostic outputs from principal
components to height coordinates.

Input Properties:

	cloud_water_mixing_ratio_components:

	alias: rcld,
dims: [‘*’, ‘rcld_latent’],
units: ,

	rain_water_mixing_ratio_components:

	alias: rrain,
dims: [‘*’, ‘rrain_latent’],
units: ,

	cloud_fraction_components:

	alias: cld,
dims: [‘*’, ‘cld_latent’],
units: ,

	clear_sky_radiative_heating_rate_components:

	alias: sl_rad_clr,
dims: [‘*’, ‘sl_latent’],
units: hr^-1,

Diagnostic Properties:

	cloud_water_mixing_ratio:

	alias: rcld,
dims: [‘*’, ‘z_star’],
units: ,

	rain_water_mixing_ratio:

	alias: rrain,
dims: [‘*’, ‘z_star’],
units: ,

	cloud_fraction:

	alias: cld,
dims: [‘*’, ‘z_star’],
units: ,

	clear_sky_radiative_heating_rate:

	alias: sl_rad_clr,
dims: [‘*’, ‘z_star’],
units: degK hr^-1,

Forcing

We use an extremely simple component to apply horizontal advective forcings
that are defined in the state as tendencies to the prognostic quantities. The
horizontal advective forcings need to be defined in principal component space.
This can be achieved using marble.convert_height_to_principal_components().

	
class marble.LatentHorizontalAdvectiveForcing(TendencyComponent)

	MARBLE component which applies advective forcings in latent space
(inputs and outputs denormalized principal components) without converting
to or from the real height coordinate.

Works by applying an advective tendency already loaded and specified in the
model state.

MARBLE

MARBLE itself is contained in a TendencyComponent. Note that the surface
latent and sensible heat fluxes should be expressed as downward values, as in
the flux into the surface.

	
class marble.LatentMarble(tendencies_in_diagnostics=False, name=None)

	
MARBLE component which works in latent space (inputs and outputs
denormalized principal components) without converting to or from the
real height coordinate.

Input Properties:

	liquid_water_static_energy_components:

	alias: sl,
dims: [‘*’, ‘sl_latent’],
units: ,

	total_water_mixing_ratio_components:

	alias: rt,
dims: [‘*’, ‘rt_latent’],
units: ,

	vertical_wind_components:

	alias: w,
dims: [‘*’, ‘w_latent’],
units: ,

	liquid_water_static_energy_at_3km:

	alias: sl_domain_top,
dims: [‘*’],
units: J/kg,

	total_water_mixing_ratio_at_3km:

	alias: rt_domain_top,
dims: [‘*’],
units: kg/kg,

	surface_latent_heat_flux:

	alias: lhf,
dims: [‘*’],
units: W/m^2,

	surface_sensible_heat_flux:

	alias: shf,
dims: [‘*’],
units: W/m^2,

	surface_temperature:

	alias: sst,
dims: [‘*’],
units: degK,

	mid_cloud_fraction:

	alias: cldmid,
dims: [‘*’],
units: ,

	high_cloud_fraction:

	alias: cldhigh,
dims: [‘*’],
units: ,

	downwelling_shortwave_radiation_at_top_of_atmosphere:

	alias: swdn_toa,
dims: [‘*’],
units: W/m^2,

	downwelling_shortwave_radiation_at_3km:

	alias: swdn_tod,
dims: [‘*’],
units: W/m^2,

	surface_air_pressure:

	alias: p_surface,
dims: [‘*’],
units: Pa,

	rain_water_mixing_ratio_at_3km:

	alias: rrain_domain_top,
dims: [‘*’],
units: kg/kg,

Diagnostic Properties:

	cloud_water_mixing_ratio_components:

	alias: rcld,
dims: [‘*’, ‘rcld_latent’],
units: ,

	rain_water_mixing_ratio_components:

	alias: rrain,
dims: [‘*’, ‘rrain_latent’],
units: ,

	cloud_fraction_components:

	alias: cld,
dims: [‘*’, ‘cld_latent’],
units: ,

	clear_sky_radiative_heating_rate_components:

	alias: sl_rad_clr,
dims: [‘*’, ‘sl_latent’],
units: hr^-1,

	low_cloud_fraction:

	alias: cldlow,
dims: [‘*’],
units: ,

	surface_precipitation_rate:

	alias: precip,
dims: [‘*’],
units: mm/hr,

	column_cloud_water:

	alias: ccw,
dims: [‘*’],
units: kg/m^2,

	height:

	alias: z,
dims: [‘z_star’],
units: m,

Tendency Properties:

	liquid_water_static_energy_components:

	alias: sl,
dims: [‘*’, ‘sl_latent’],
units: hr^-1,

	total_water_mixing_ratio_components:

	alias: rt,
dims: [‘*’, ‘rt_latent’],
units: hr^-1,

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/mcgibbon/marble/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

MARBLE could always use more documentation, whether as part of the
official MARBLE docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/mcgibbon/marble/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up marble for local development.

	Fork the marble repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/marble.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv marble
$ cd marble/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 marble tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated.

	The pull request should work for Python 3.4, 3.5, and 3.6. Check
https://travis-ci.org/mcgibbon/marble/pull_requests
and make sure that the tests pass for all supported Python versions.

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Jeremy McGibbon <mcgibbon@uw.edu>

Contributors

None yet. Why not be the first?

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

History

0.1.0 (2019-05-30)

	First release on PyPI.

Index

 A
 | C
 | D
 | I
 | L
 | R

A

 	
 	AliasDict (class in marble)

C

 	
 	convert_height_to_principal_components() (in module marble)

 	
 	convert_principal_components_to_height() (in module marble)

D

 	
 	DiagnosticPrincipalComponentsToHeight (class in marble)

I

 	
 	InputHeightToPrincipalComponents (class in marble)

 	
 	InputPrincipalComponentsToHeight (class in marble)

L

 	
 	LatentHorizontalAdvectiveForcing (class in marble)

 	
 	LatentMarble (class in marble)

R

 	
 	register_alias() (in module marble)

 	
 	register_alias_dict() (in module marble)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 MARBLE

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Quickstart

 		
 Usage

 		
 Aliases

 		
 Initialization

 		
 Decomposition

 		
 Forcing

 		
 MARBLE

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 Credits

 		
 History

 		
 0.1.0 (2019-05-30)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

